请安装我们的客户端
更新超快的免费小说APP
添加到主屏幕
请点击,然后点击“添加到主屏幕”
p; 幸好,顾律宣布接下来进入下面的提问环节。
现场这近千号人,现在几乎全部有问题想要问顾律,顾律不可能去一一回答,所以只能够随机抽选几个人的问题进行答复。
第一个被顾律抽到的是一位来自丹麦的数学家。
这位数学家算是是一个代数领域的大牛,提问了顾律一个关于狭义霍奇猜想的专业性问题。
根本不见有任何的思索,顾律直接回答了这位数学家的提问。
第二位站起来的是没有邀请函被包松全放进来的一位数学家。
这位数学家显然是听不太懂顾律的报告内容,所以问了一个别的众人很感兴趣的问题。
“顾教授,狭义霍奇猜想已经被您和西蒙教授证明,那么接下来你们有没有证明广义霍奇猜想的想法?”
这个问题一问出来,礼堂内几乎所有数学家都停下手中的动作,竖起耳朵倾听。
广义霍奇猜想,那是在狭义霍奇猜想之上更高难度的存在,是霍奇猜想的完全体。
证明难度最最起码要比狭义霍奇猜想高上两三个档次。
如果把狭义霍奇猜想比作是泰山的话,那广义霍奇猜想就相当于是珠穆朗玛峰。
狭义霍奇猜想还有人尝试着去进行攻克攀登。
但广义霍奇猜想的话,只是单纯的说起,就让人闻之色变,更不用谈去攀登征服!
作为千禧年七大难题之一,广义霍奇猜想就是一座巍巍高峨的巨峰。
大部分数学家是连一丝一毫想去尝试一下的念头都没有。
不过。
要说在目前的数学界,谁最有希望去征服广义霍奇猜想这座高峰,但无疑是顾律和西蒙两人!
这一点毋庸置疑!
因为顾律和西蒙可以说是目前在全世界范围内,对霍奇猜想理解最深刻的两个人。
但,实话说。
即便顾律和西蒙两人表现出神乎其技的效率,仅用半年时间就证明狭义霍奇猜想,但现在,仍旧只有极少人会相信顾律和西蒙可以证明广义霍奇猜想。
很多人都清楚,狭义霍奇猜想和广义霍奇猜想是两个完全不同的概念。
类比于体育运动的话。
证明狭义霍奇猜想相当于女排夺冠。
而证明广义霍奇猜想相当于国足捧起世界杯奖杯!
虽然知道不太可能,众人还是期待顾律给出的回答。
只见顾律站在台上摸着下巴思索几秒,开口回答,“短期内,我并没有去证明广义霍奇猜想的计划。”
果然!
顾律这个回答没有出乎众人的预料。
广义霍奇猜想这个东西,是让人闻之色变的存在,想必即便是顾律,仍旧是对其没有丝毫把握。
但是,刚才顾律的话并没有讲完。
顾律话语一转,脸上噙着淡淡的笑容接着说道,“不过,证明霍奇猜想是列在我未来的计划之内的,要是到时候该猜想还未被人证明,我来尝试一下未必不是不可以。”
顾律的话语一出,众人尽皆哗然。
他们没想到,顾律真的是有证明广义霍奇猜想的念头。
可是……
那时广义霍奇猜想啊!
即便是在千禧年七大难题当中,都足以排在前三的存在。
顾律真的有勇气去尝试吗?